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ABSTRACT

The solution of large order Fourier-Bessel equations, whose
derivative is zero at the boundaries of a cylindrical geometry,
is found using a series expansion method. -
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1. INTRODUCTION

The solution of the wave equation constrained to a
cylindrical geometry gives rise to a radial dependence in terms
of Fourier-Bessel functions. This analysis is that appropriate to
an annular duct and therefore the eigenfunctions include both
Bessel and Neumann contributions. At any radius, the argument of
the Fourier-Bessel function is determined by an eigenvalue which
depends on both the radial node number (1) and the order of the
eigenfunction (n). These eigenvalues are determined from the
boundary condition of zero derivative at the inner and outer
radii of the duct.

The method used herein seeks to construct solutions of the
large order Fourier-Bessel functions from those of the zeroth
order by obtaining coefficients to a truncated infinite series
expansion. The coefficients are eigenvectors which are associated
with modified versions of the large order eigenvalues.

The number of terms necessary for accuracy of the truncated
infinite series is investigated and the resulting large order
eigenfunctions are plotted.

2.THEORY

2.1 Basic Eauations

The solution of the wave equation (with or without mean
flow)

( v'- r!t) = 0

where '(r,t) is a wave function and a. is the speed of the wave
motion, results in a radial dependence given by

d + 1 +k + noR =0
dr L r dr '

where R(r) are a complete set of orthonormal radial
eigenfunctions called Fourier-Bessel functions and RZ(r) = R,
r), i.e. n is the order of the function and 1 is the radial node
number (1=0,1,2 .... ). Specifically, the RZ(r) are a combination
of Bessel and Neumann functions. The Fourier-Bessel function
differs from the Bessel function because it depends on n which is
constrained by the number of circumferential wavelengths fitted
around the duct, i.e. n is the circumferential mode number.
Hence, because the circumferential dependence is harmonic, the
"Bessel" function has a Fourier component and therefore we call
it a Fourier-Bessel function. Solutions of this equation are
admitted only for certain values of the eigenvalue k^ which is
determined from the boundary condition
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dr

at r=*l.O,h where h is the ratio of the hub of the duct to the
outer radius. This boundary condition arises because the radial
gradient of the wave function is zero at the inner and outer duct
radii; for example, the radial velocity must vanish at the hub
and the tip for non-porous walls.

Normalisation of the eigenfunctions fixes their magnitudes
absolutely and is achieved by

rR (r)l (r) dr =

2.2 Expansion Of The Higrher Order Modes

Following the approach of Namba (ref.1) we expand the nth
order eigenfunction in terms of the zeroth mode

R,-(r) = E BZ;. R:(r)

where L is as large as we wish. Hence, we have

B; R + I _ R" + (k' - n')BL R" 0

r r

and also

,,+ 1 R .+ P = 0
r

where summation over m is implied for both equations.

(k- - )B^.R.= 0

Putting 17 = kt/n", then multiplying by rR (r) and integrating

f(K;' )i- k) BZ JR5rd r I B4 B:R dr = 0

-. 2B. %= n% +. m

where = 1 (r)R (r) dr (2.2.1)
Sr

and K" and B, are respectively the eigenvalues and eigenvectors
of a matrix
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+ k-' 6. (2.2.2)
n

Note that fr R; dr = J BBr. it r dr

Z C 1 (2.2.3)

i.e. the normalisation condition applied to the eigenfunctions
means that the sum of the squares of the eigenvectors is one.

2.3 The Boundary Condition

Since !^(r) is a combination of Bessel and Neumann
fuinctions, we can represent it by

R(r) = AJ'(r) + BY(r)

where A and B are constants depending on n and 1. We have dRZ= 0
at r=l.O,h dr

hence, kqAJ, (k^h) + k.BY (kZh) = 0

and AJ ( k-', + k BY,, ( k- 0

Assuming k2 * 0, this gives

B J ( e., ) = - J (kh) (2.3.1)
A Y (I) Y.- (kh)

Since our solution does not extend to r=O, BOO and therefore

J.(k), k- (kh) - J' (kh)Y. (k) = 0

Abramowitz (ref.2) gives the solution of this as

I = + p + + r - 4pq + 21' + ... (2.3.2)
0'

where, if p - 4n' and x = 1.0/h

- 1.0 8x
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q46L - 63)(x - 1.0)

6(4) (A - 1.0)

r ( + 185 2. - 2053U + 1899)(( - 1.0)
5(4>.F (A - 1.0)

2.4 Coefficients Of The Zeroth Order Eigenfunction

The normalisation condition gives

rRZ(r)RZ(r) dr = &. (2.4.1)

j'rR,'(r) dr = 1.0

McLachlan (ref.3) gives

C.,(kz) zdz 0.5 z1 (C(kz)(1.0 -kZ (24)
k -Z (2.4.2)

where C,(kz) is a cylinder function (i.e. any combination of
Be5sel and Neumann functions) of unrestricted order v.

Therefore, applying this to R;(r) with n=O and noting that
R(k ) = R4(k h) = 0, we get

rtR.(4kr) dr = 0.5( R(k.) - h R.(k h)) - 1.0

Putting RP(Jr) = AJ.(k*r) + BY. (K r)

- A( J. (k*r) + B Y, (4 r)

gives

It J-(k;) + (R) Y () + 2(P)J. (k, (

AA' )

2h" ()J. (krh)Y. (K h) 1 1.0

For n=O, B = - J(K
A Y.(k )

and since J.'= J

-8-

_mm __mmmmmm m4mim mmm mm mmm



A Y. (1q

Hence, for the zeroth order eigenfunction, both coefficients can
easily be determined and the problem now becomes one of
evaluating the integral (2.2.2) and extracting the eigenvectors
from the resulting matrix.

2.5 Zeroth Node Number Terms

R (r) is a complete set of orthonormal functions and
therefore the 1=0 term must be included. Clearly, the boundary
condition formula (2.3.2) cannot be used here since 1=0 results
in a singularity.

Actia~ly, we see that k1=0, because n=l=0 means that there
are no nodes in the radial and circumferential directions, i.e.
the wavelengths in each case are infinite, and therefore the
formula cannot be derived. If K =0, the arguments of the Bessel
and Neumann functions are zero. However, this results in
Y:(O) - -w and . B = 0 for k'= 0. Hence,

R:( ) = AJ:*(0)

for n=0 R:(0) = A since J:(0) = 1.0

i.e. ,R: = constant

IL

We have rR.*dr 1.0

:. (1-h 1.0
2

., R: 12
2 I.0 -

Equation (2.2.1) gives

J1 R: (r)R! (r) dr
Sr

if m = 0

R= _2--i) 1R(r) dr

and if m = j = 0
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R=- 2lo!eh21. Oct.

We are now able to form all values of the integrand of R. form,j = 0,1,2,.... ,L-l.

2.6 Outline Of The Method Of Solution

Use of a Simpson's rule approximation will now be sufficientto evaluate R~~ for all values of m and J. Addition of JlC/n' to

the diagonal elements of the matrix thus obtained will provide us
with a matrix, the eigenvalues and eigenvectors of which will be
KZ' and BL respectively.

He note in passing that the matrix must be real and
symmetric and therefore its eigenvalues will be real whig
implies that its eigenvectors are real. Therefore, the n order
elgenfunctions must be real. Furthermore, as n - -, the influence
of the k '/n becomes less and less and hence the matrix becomes
constant for given L and h, i.e.

RO, - + 0(1/n')

3. RESULTS

A computer program based on this theory has been written
which demonstrates the behaviour of the large order
eigenfunctions.

It is useful first to observe from fig.l, which is taken
from ref.l, that the eigenvalues K' of the matrix given by
(2.2.2) decrease monotonically as n increases, but that the
limits are all greater than unity and differ with 1.
Additionally, for given 1, KZ can be made closer to unity by
increasing the number of retained terms L. This behaviour is as
expected since as n- , the matrix tends to R.j ,i.e. the n
dependence drops off as 1.0/nL and therefore a limit is reached.
This limit is not unity because an infinite number of terms are
not retained. Namba (ref.l) and McCune (ref.4) discuss this
behaviour in more detail.

The eigenvectors B associated with the ' &are calculated
subject to the normalisation condition (2.2.3) and these together
with the zeroth order Fourier-Bessel functions provide the ni
order Fourier-Bessel functions which are plotted in figs. 2, 3,
and 4' It is noticed that for given n at 1=0, most of the effect
of the radial variation is concentrated near to the outer radius,
but that as 1 increases the peak shifts to the inner radius. If
we examine the eigenvalues for each R: and take the product 1Tr
then we can choose for the peaks to occur at K r,=1.0 (where ro
is the radius at the peak) by judicious choice of L. Hence, as 1
increases, K; increases and therefore the peak occurs at smaller
r, i.e. towards the hub. Conversely, as n increases at constant
1, the peak will move to the outer wall.

The reason why the optimum number of terms for the expansion
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(L) was chosen such that Krx =1.0 is explained in the next
section. It should be noted that an asymptotic expansion does not
necessarily become more accurate as more terms are taken. The
value of L which made fqr =1.0 turned out to be 6 or 7.

4. DISCUSSION OF RESULTS

Abramowitz (ref.2) gives, for large order Bessel and Neumann
functions

J,(nz) - (4r, Ai(n r' +

Y,(jnz) -~ -(A4Br 
1 +V

l~zLI_  n v

where Ai and Bi are the Airy functions given by
Ai(nC) - 1 (n*%)+sin(+4 +

Ir
%  

i

Bi(nC) - I (n%')cos( +)'4 +

for 4<0 and

2/3(-C) = (z-1- cos'(I/z) for z?1.

If we put z=Kr, then nz becomes nKZr = k r, i.e. the argument of
our Fourier-Bessel functions. We can now construct an expression
for the large order Fourier-Bessel functions:-

RA,(K r) A (4j (44r-) (sin(C+r/4) + B cos(4+rf4))

or

R,(kr) ~_A(4 '(sin(+,/4) + B cos(C+,r4)
(nn) lzLI/  A /) (4.1)

To get quantitative results from this formula we need to
find IQ. This cannot be found from the boundary condition (2.3.2)
despite the fact that K = kZ/n because this formula does not hold

for large n.

Furthermore, the expression for 4 is only valid for C real,i.e. z~l. If this is not the case, an alternative expression for

C is used which leads to exponential terms for the Airy functions
and their derivatives. Interested readers are referred to
Abramowitz (ref.2). Here, we simply observe from (4.1) that

K~r=l, i.e. z=l, implies a peak for P;(r).
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5. CONCLUSION

- It is clear from the partial derivation of a formula (4.1)'
which attempts to evaluate analytically the large order
Fourier-Bessel functions that problems are posed such that
results can only be extracted with great difficulty. A major
hurdle is the evaluation of the eigenvalues at large n.

By contrast, an infinite series expansion truncated after
an appropriately large number of terns provides the behaviour
hinted at (but not described) in the formula 4-;I1 and utilises a
simpler approach. The evaluation of the integral (-F2.2.2f is
central to the method and this presents no difficulty.

Some correlation of the results obtained is provided by
reference to the peak value of RZ(r) and its behaviour with
respect to changing n and 1. From the examples taken 6 or 7
terms are seen to be necessary for the expansion. Values of R4(r)
for large n show a decreasing dependence on this parameter and in
fact, for n- , R;(r) - Fr(r) which depends simply on R given by
(2.2.1).

'This work has examined the behaviour of a perhaps recondite
function at large orders, but it is one which is essential for
correct analysis of the radial dependence of a wave function
where the inner boundary of a cylindrical geometry has a finite
value. - -,- " ,

S. ROBERTS (S.0.)

- 12 -



RFFERFNCES

1. NAMBA M. "Lifting Surface Theory For A Rotating Blade Row,
Part 1: Subsonic Blade Rcw", November 1972
Dept. of Engineering, Cambridge University
A.R.C. 34 126.

2. ABRAMOWITZ M. & STEGUN I.A. "Handbook Of Mathematical
Functions", Dover Publications, 1972.

3. McLACHLAN N.H. "Bessel Functions For Engineers"
Oxford University Press, 1934.

4. McCUNE J.E. "A Three Dimensional Theory Of Axial Compressor
Blade Rows- Application In Subsonic And Supersonic Flows"
Ph.D. Thesis, Cornell University, 1958.

13 -



FIG

20-
h-0.4

Lao9

l0

0JO 20 30 . 40 00

Dependence of modified tadial elgienvalues upon radial

mods number L and Circumiferential mode number a~.

h 0.4, L w9.,

ARE T (UpAl 88504



FIG .2

TD -

o

! °

!S

II
II

I. ',, IV I,, hIm.  ' 'l

i - 16 -

ARE Th (UH-A) 88504



£ FIG.3

* a
CD -

-JN

'5
0

I

da

U.4 j
I.C

I

p. U

'.0

jSSSS'.'.

I

'S
4

I
I

p.

S

I I I U
S U S. U

o a 7 7
inuawtaeszu

S

- i7 =

* ARE Th (UHA) 58504

____________________________________________________



-w-~ ~w-- - - _-

I

FIG.4

ID

B a.5
0 I*
C I

do

3 ar I.
I.

I S

0

I.-

*5

o

S
S

0 I 7 Y

- 18 - ARE TM (UHA) 58504



A Tw

FIMb


